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Abstract

Two supernovae have been identified in the COMPTEL data base as being the best

sources to investigate for evidence of gamma-ray emission caused by radiative neu-

trino decay. These are SN1987a and SN1993J. A detailed simulation has shown us

that we can expect a gain in sensitivity 1-3 orders of magnitude (depending on neu-

trino mass) over previous results. Instrument response is now being modeled using a

SPARC10 computer aquired for this study. A library of simulated gamma-ray lines

is being produced for COMPTEL as a by-product of this effort. Final results will be

the Ph.D. thesis of R.Miller.



I. Computer Simulation of Supernovae Neutrino Production

A full 3-D computer simulation model of neutrino transport from an expanding

spherically symmetric shell has been completed which includes the effects of a two-

body neutrino decay with a single gamma in the final state. The original model used

in the proposal has been corrected for phase-space effects in the assumed Fermi gas

model of neutrino emission and also has been speeded up considerably by the use

of approximations where appropriate. The model is now running at the COMPTEL

site at UNH and has been used to make preliminary predictions of the gamma-ray

flux at earth as a function of neutrino mass and lifetime.

In the analysis we have concentrated on two important type-II supernovae, SN1987A

and SN1993J. The closeness of SN1987A means that heavy neutrinos have not yet

reached earth but are still decaying on route at detectable fluxes. SN1993J, on the

other hand, was much farther away (3.2 Mpc) but COMPTEL observed it at a much

earlier time so that intermediate masses would still be detectable. Figure 1 shows

the expected sensitivity of COMPTEL from observations made during phase I and

II. Also shown are the published limits from Solar Max observations of SN1987a in

1987. From this figure it is clear that a gain of 1-3 orders of magnitude in neutrino

lifetime sensitivity will be achieved by analysis of COMPTEL data from these two

supernovae. More detailed and advanced analysis techniques should improve the

lifetime limits by 1-3 additional orders of magnitude. These results were presented

at the Compton Symposium in St. Louis, the Cosmic Ray School at Erice, and at a

GSFC colloquium.

II. Computer Simulation of COMPTEL Response

In order to perform a sensitive search for neutrino decay it is necessary to under-

stand the COMPTEL instrument response to such a signature. This search covers a

large portion of neutrino mass/lifetime parameter space and therefore requires many

different gamma spectra to be compared with actual observational data. Because

the COMPTEL instrument response to a given spectrum requires large amounts of

CPU time, a method has been developed to synthesize the continuum gamma ray

flux expected from neutrino decay using a library of mono-energetic instrument re-

sponse lines. With the appropriate weighting factors the lines are combined into an

instrument response which simulates that expected from an actual decay gamma ray

spectrum. This instrument response library is currently under development at the

University of New Hampshire. Once this library is complete, detailed analysis on the

search for a radiative decay signature can begin.

III. People and Equipment

Richard Miller, who earned his M.S. at LSU has now moved to the University
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of New Hampshire, where he is plans to finish his Ph.D. on analysis of SN1987A

and SN19933 for neutrino decay. He is now working full-time on this with a NASA-

sponsored fellowship. Due to the computer-intensive nature of the COMPTEL in-

strument response, it was necessary to obtain a much faster computer than was

available at UNH in order to complete the simulation work on the time scale of a

Ph.D. thesis. Therefore, a SUN Sparc-10 was obtained through the Guest Investi-

gator grant and dedicated to this analysis. The machine is now in place and being

used by Miller at UNH.

IV. Talks Given

Talks on radiative neutrino decay from supernovae were given at:

1. The Compton Symposium, St. Louis, 1992. (by R.Miller)

2. The Cosmic Ray School at Erice, June 1992. (by R.Miller)

3. GSFC Fellowship Seminar, September 1993. (by R.Miller)



4. LSU SpaceScienceSeminar,March 1994. (by R. Svoboda)

V. Papers Published

Published papers of the radiative neutrino decay analysis are:

1. "A Search for Radiative Neutrino Decay from Supernovae", The Compton Sym-

posium, St. Louis, 1992, ed. M.Friedlander, N.Gehrels, and D.Macomb, AIP

Conference Proceedings 280 pp 153-158, (1992).

2. "A Search for Radiative Neutrino Decay from Supernovae", Proceedings of the

NATO Advanced Study Institute on Particle Astrophysics and Cosmology, ed.

M.M.Shapiro, R.Silberberg, and J.P.Wefel, pp 111-118, (1993).
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Abstract

If a massive neutrino species exists then it is possible that it has a radiative

decay mode. Cosmological arguments require that a neutrino of mass > 100eV

be unstable. Motivated by these considerations, a 3-D model of radiative neutrino

decay has been developed and used to simulate the decay evolution of supernova

neutrinos. A sensitive search for the decay gamma rays using extragalactic su-

pernovae and SN1987a as neutrino sources is proceeding using the COMPTEL

instrument aboard the Compton Gamma Ray Observatory.

I. The Search for Massive Neutrinos

The search for the existence of a massive neutrino species is an area of intense

theoretical and experimental research. Until recently, laboratory studies indicated

that the observed properties of the neutrino were consistent with zero rest mass.

The notable exceptions have been the experiments studying solar neutrinos and

nuclear beta decay [1].

Very massive neutrinos (> 100eV) are expected to be unstable. Astrophysical

limits based on the requirement that the mass density of the universe not exceed

fl = 1 require _]mv < 100eV [2]. Thus a massive vr should decay. A very reason-

able decay mode to expect would then be:

u- --, uo., + _ (1)

Tl_s mode is the simplest two-body decay that does not violate any known

conservation laws (except lepton flavor). No new particles are required and angu-

lar momentum sum rules are satisfied.

II. A Search for Radiative Neutrino Decay

We are currently performing a sensitive search for radiative neutrino decay in

conjuction with the COMPTEL instrument team. The recently begun search uses

type-II supernovae as the source of neutrinos. The high angular resolution and
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sensitivity of the COMPTEL gamma ray telescope [3] provides a unique oportu-

mty to study any supernova gamma ray emissions. By observing SN1987A and

extragalactic supernovae, any observed emissions can be ana.lyzed and the relevant

neutrino mass and lifetime computed (assuming a radiative decay mode) as de-

scribed in the following sections. The non-observation of gamma rays from these

sources will place significant limits on neutrino mass and lifetime.

III. Supernova Neutrinos

The detection of neutrinos from SN!987A [4] confirmed the central theoretical

prediction of neutrino production in type-II supernovae: approximately 3 x 1053

ergs of binding energy released primarily as neutrinos on a time scale of a few

seconds. The neutrinos detected by the IMB and Kamiokande Co].laborations were

very Likely _, based on the relevant neutrino-water cross sections. It is widely

believed, however, that since the V_'s were probably produced by e+e-scattering

within the proto-neutron star, a roughly equal number of all six neutrino types

should have been generated. If the tau neutrino, for example, is composed prl-

marily of a massive component then this "neutrino laboratory", in the form of a

type-II supernova, provides a copious number of more than 6 x 105z vT to study

(with an equal number of VT) [5].

IV. Radiative Neutrino Decay Model

The computer model developed is a full 3-D simulation including parent neu-

trino spectra, relativistic kinematics, and angular dependencies. The model allows

the neutrinos to stream from the surface of the proto-neutron sta: and decay in

flight. An expanding spherically-symmetric shell is assumed and relativistic kine-

matics appropriate to two-body decays in flight are used. Relative time since the

SN, resultant gamma ray energies, and angle between the gamma-ray arrival di-

rection and the SN-Earth a2ds are recorded. In this way, arrival-time distributions

can be made on selected gamma-ray energy slices for assumed values of m_ and

v,. In addition, energy spectra can be produced on given time windows along with

ang-u]ar distribution histograms.

V. Search Method

Due to the parent neutrino energy spectrum and the assumed fi_n_ite neutrino

lifetime, the energy spectra of the decay gamma rays will evolve over time in a

complex (but predictable) manner, examples of which are shown in Figure 1 for

two mass values. Because of this spectral evolution, the gamma ray fluence de-

tected - and therefore the mass/lifetime limits obtaSned - depends on when, in the

history of the supernova, an observation occurs. The most sensitive ].imits can be

achieved by observing the source during a period when the gamma ray fluence is
_." __
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Spectral Evolution - m_=2OeV Spectre/ Evolu2on - rn_=lTkeV

Figure 1: Spectral Evolution - m, = 20eV and 17keV, D=20 Mpc, r_ = 3.5 x 10 _4

(17keV), 7"_= 5.6 x 10 _6 (20eV), each curve represents the spectrum for a different

time interval. The bottom curve represents the spectrum for arrival times 0-10

seconds. The second curve for 10-100 seconds, etc.

Table 1: Estimates of Gamma-Ray Flux

m_ D 0 s delay 105 s delay 10; s delay

20 eV 55 Kpc 5.6 0.0 0.0

17keV 55Kpc 2.4x 104 2.6x104 3.5x104

20eV 20Mpc 1.6x 10 -2 1.3x10 -2 0.0

17 KeV 20 Mpc 0.17 0.18 0.92

at maximum. The gamma ray arrival times can be distributed over a few seconds

or many years, depending on the mass and lifetime of the deca.,'dng neutrinos. The

arrival time distribution for a sample source is shown in Figure 2.

It is clear that there ex_ists an optima/observational delay w_ch will provide the

most stringent Emit. In the current search however, the ability., to choose the op-

timal delay does not exist. Except for SN1987a observations ",-kich are an integral

part of the Compton observatory's viewing program, we rely on past supernovae

- or if we're lucky a new supernova - appearing in the COMPTEL instrument's

field of view (approximately 64°). Thus, the observational delay since a supernova

occurred will dictate the rn,./r_, parameter space being sampled in any given ob-

servation. Table 1 shows estimates of the gamma ray fluence (o- (cm-2)) expected

in COMPTEL for different observational delays (assuming an e:v_osure of 5 x l0 s s).
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Figure 2: Arrival time distribution of gamma-rays, D=20 Mpc, _'v = 3.5 × 10 la

(17keV,solid), 7"v = 5.6 × 10 'e (20eV,dash)

VI. Past Searches

SN1987A provides a unique opportunity to study neutrino properties. At the

time of the supernova there were a number of spacecraft capable of performing

gamma ray observations. The most sensitive instrument was the Gamma Ray

Spectrometer (GAS) aboard the Solar Maximum Mission (SMM) satellite [6]. No

gamma ray pulse was seen within 10 seconds of the IMB neutrino burst time.

Thus, limits were set on the neutrino lifetime.

The Emits published from the SMM observations are based a_a a simple 1-D

model of radiative neutrino decay using monoenergetic supernova neutrinos. For a

light neutrino species the limit from Bludmaa [7] is rv = 2.8 x 1015rn_ sec while for

a heavy neutrino the limit is r_, = 6.0 × 101Srn_ "1._ec 1 both assuming a branching

ratio to a radiative decay mode of 1.

Detailed calculations show that COMPTEL, because of improved sensitivity

and source exposure, should be able to improve these limits from 1-6 orders of

magnitude for very massive neutrinos, while for light neutrinos the limits achiev-

able may be slightly worse (unless a Galactic supernova is detected). Recen t anal-

ysis from the COBE experiment puts very significant limits on the lifetime and

branching ratio of radiative neutrino decay [8]. However these results, in addition

to other cosmological arguments, require assumptions about the early tmiverse and

thus are not a direct test of the stability of massive neutrinos.
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Abstract

H a massiveneutrinospeciesexiststhenitispossiblethatithas a radiative

decay mode. Cosmologicala_mnents requirethata neutrinoofmass > 100eV

be unstable.Motivatedby theseconsiderations,a 3-D model ofradiativeneutrino

decay has been developedand used tosimulatethedecay evolutiond supernova

neutrinos.A sensitivesearchforthe decay gamma raysusingextragalz_csu-

pernovaeand SN1987a as neutrinosourcesisproceedingusingthe COMPTEL

instrumentaboard theCompton Gamma Ray Observatory.The non-observation

ofdecaygamma raysv_uld placemore stringentmassflifetimelimitson theneu-

trinothan currentlimitsby about i-6ordersofmagnitude (dependingon mass).

Such a systematicanalysishas neverbe[orebeen attempted.Inaddition, thepro-

duct'ionofthedecaygamma raysovercosmologicaltin_-scalesisbeingstudiedto

determineitspossiblerdatiomhiptothe_ gmznna rayemission.

L The Search for Massive Neutrinos

The search for the existence of a massiveneutrinospeciesisan areaofintense

theoretical and experiamntal research. Until recently, laboratory studies indicated
that the observed properties of the neutrino were consistent with z._so rest mass.

The notable _ceptions have been the expetinm_ studying solar neutrinos and
nuclear beta decay.

For over 20 years the study of electron neutrino production in our Sun has led

to the so called '_olar Neutrino Problem". So far, all solar neutrino expefiamnts

have detected a lower flux than predicted [1]. One compelling explanation for this
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is the introduction of neutrino flavor oscillations, which require neutrinos to pos-

sess mass [2].

Recently. evidence has been building for the existence of a heavy 17-keV neu-

trino. This neutrino has been indirectly observed by studying the electron spectra
from the beta decay of a number of nuclear isotopes [3]. The deviation in the

observed endpoint energies of the beta spectra can be interpreted as the existence
of a 17-keV neutrino mixing at the 1% level with a _normal" massless re. Ac-

celerator limits on v_--* veoscillations indicate that the massive neutrino is not

associated with v_ [4]. Since the measurement of the Z ° width appears to a]Jow
only three types of neutrinos with mass less than 45 GeV, this massive 17-keV

neutrino must be the yr. Although the evidence is controversial and awaits un-
ambiguous confirmation the current results make the search for massive neutrinos

even more intriguing.

There arealsotheoreticalreasonstobelievethatneutrinoshavemass. Massless

neutrinosare not requiredby theStandardModel ofparticlephysics.In factit

has beennecessaryto introducetheconservedquantum number of '%ptonflavor"

to distinguishthethreetypesofneutrinos.Thisinternaldegreeoffreedommight

manifest itself in mass differences, as it does for the charged leptons.

Very massive neutrinos (_ 100eV) are expected to be trustable. Astrophysical

limits based on the requirement that the mass density of the universe not exceed

_2= 1 require Era, < 100eV [5]. Thus a 17-key v_ should decay. A very reasonable

decay mode to expect would then be:

v, _ v_,_,+'y (1)

This mode is the simplest two-body decay that does not violate any known
conservationlaws(exceptleptonflavor).No new particlesarerequiredand angu-
larmomentum sum rulesaresatisfied.

H. A Search for Radiative Neutrino Decay

W_ are oxrrently performing a sensitive search for radiative neutrino decay in

conjuction with the CO_ instrument team. The recently begun search uses

type-II supernovae as the source of neutrinos. The high angular resolution and

sensitivity of the COMPTEL gamma ray telescope [6] provides a unique oportu-
nity to study any supernova gamma ray emissions. By observing SN1987A and

extragalactic supernovae, any observed emi_'ons can be analyzed and the relevant

neutrino mass and lifetime computed (assuming a radiative decay mode) as de-

scribed in the following sections. The non-observation of gamma rays fzom these

sources will place significant limits on neutrino mass and lifetime.
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IlI. Supernova Neutrinos

The detection of neutrinos from SN1987A [7]confirmed the central theoretical

prediction of neutrino production in type-II supernovae: appro.,dmatdy 3 x 10m

ergs of binding energy released primarily as neutrinos on a time scale of a few
seconds. The neutrinos detected by the IMB and Kamiolo_de collaborations were

very. likely p,, based on the relevant neutrino-water crcc,s sections. It is widely
believed, however, tha_ since the _,'s were probably produced by e+e-scattering

within the proto-neutron star, a roughly equal number of all six neutrino types

should have been generated. If the tau neutrino, for _v,ample, is composed pri-
marily of a massive component then this '¢neutrino laboratory", in the form cf a

type-II supernova, provides a copious number of more than 6 x 10sT v_ to study

(withan equalnumber of _,).

IV. Radiative Neutrino Decay Model

The computer model developed is a full 3-D simulation including parent neu-

trino spectra, relativistic kinematics, and angular dependencies. The mode/allows
the neutrinos to stream horn the surface of the proto-neutron star and decay in

flight. An expanding spherically-symmetric shell is assumed and relativistic kine-
matics appropriate to two-body decays in flight are used. Relative time since the

SN, resultant gamma ray energies, and angle _ the _my arrival di-
rection and the SN-Earth axis are recorded. In this way, arrival-time distributions

can be made'on selected gamma-ray energy slices for assumed values of m_ and

r_. In addition, energy spectra can be produced on given time windows along with

angular distribution histograms.

The parent neutrino spectrum is a Femfi-Dirac distribution with a tempera-

ture of 8 MeV [8]. It is higher than the measured _, temperature (4 MeV) due to
the lower opacity of the pinto.neutron star to v_, and v,.as compared to v,. The

spectnan is nommlized such that the total energy in v_ is equal to the measured

neutrinoenergyreleasedfrom SN1987a in zT,. This is expected to be true due to

equipartitioa argummts.

V. Search Method

Due to the parent neutrino energy spectrum and the assumed finite neutrino

Lifetime, the energy spectra of the decay gamma rays will evolve over time in a

complex (but predictable) manner, examples of which are shown in Figure I for
_. mass values. Because of this spectral evolution, the gamma ray fluence de-

tected - and therefore the mass/Lifetime limits obtained - depends on when. in the

history of the supernova, an observation occurs. The m_ sensitive limits can be
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Figure 1: Spectral Evolution - m. = 20eV and 17keV, D=-20 Mix:, rv = 3.5 × 10z4

(17keV), r. = 5.6 x 1016 (20eV), each curve represents the spectrum for a different
time inter_'al. The bottom curve represents the spectrum for arrival times G 10

seconds. The second curve for 10-100 seconds, etc.

achieved by observing the source during a period when the gamma ray fluence is

at rrmximum. The ganmm ray arrival times can be distributed over a few seconds

or many years, depending on the mass and lifetime of the decaying neutrinos. The

arri_ time distribution for a sample source is shown in Figure 2.

It is clear that there exists an optimal ohser_ional delay which will provide the

most stringent limit. In the currest search however, the ability to choose the op-

timal delay does not exist. Except for SN1987a olr, ervaZions which are an integral

part of the Compton observaZory's viewing program, we rely on past supernovae

- or if we're lucky a new supernova - appearing in the COMPTEL instnnnent's

field of view (appmxix_ely 64°). Thus, the observational delay since a supernova

occun'red will c_ctatethe rr_,/rv parameter spare b_ sampled in any _ven ob-

servaticm. T_ble 1 shows estimates of the gamma ray fluence (¢, (cm-2)) expected

in COMFTEL for different observational delays (assuming an _ of 5 x 10s s).

°

!

i

VI. Past Sear_es

No .systematic search of this type has been attempted before. However, SN1987A

provided a unique opporttmity to study neutrino properties. At the time of the

supernova there were & number of spacecraft capable of performing gamma ray

obsen_tions. The most sensitive instrument was the Gamma Ray Spectrometer

(GRS) aboard the Solar Maxizrmm Mission (SMM) satellite [9]. No gamma ray

pulse _zs seen within 10 seconds of the IMB neutrino burst time. Thus, limits
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Figure 2: Arrival time distribution of gamm_ray's, I)=-20 Mpc, r_ = 3.5 x 1014

(17keV,solid), r,, = 5.6 x 10_6 (20eV, dash)

rr_
20eV

17 keV
20eV

17 KeV

Table 1: F_sdmates of _P, ay Flux

D 0 s delay 105 s delay 10r s delay

Kpc

2O Mt_

Mpc

5.6 0.0 0.0

2.4 x 104 2.6 x 104 3.5 x 104

1.6 x 10-2 1.3x 10-3 0.0

0.17 0.18 0.92,
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were set on the neutrino lifetime.

The limits published from the SMM observations are based on a simple 1-D
modal of radiative neutrino decay using monoeuergetic supernova neutrinos. For

a light neutrino spedes the limit from Bludman [10] is given by:

rv = 2.8 x 1015m,,sec

while for a heavy neutrino the limit is:

(2)

r_ = 6.0 x 1018m_lsec

both assuming a branching ratio to a radiative decay mode of 1.

(3)

As suggested above, the parameter space sampled in such a search is very sensi-
tive to the observational delay and source exposure. Since the supernova occurred.
Since the observation window of SN1987a by SMM was short (only 10 seconds due

to calibration runs, the SAA, and background considerations), and the ohsen_
tional delay was zero, the sensitivity for observing gama_ rays for very mass/re
neutrinos is redu£e_

VII. Neutrino Decay and the Diffuse Gamma Ray Emission

Evidence for a diffuse gamma ray flux comes primarily from SAS 2 data [11].

There appear to be maltiple components to the measured flux: a galactic and

isotropic components. The galactic component is thought to originate from cosmic

ray electron brehmstrahlung or Compton radiation, while the origin of the isotropic
component is still a significant open question, biany ideas for the production of

this isotmpiccomponent have been pug forward, altlmugh none are completely

satisfactory [12]. We are cun'ently investigating the role radiative neutrino decay

would play in the ta'oduction of the isotmpic _ emim'on.

Amaning an isotmpic and _ universe, the energy spectnan of
gamma ray emission (due to radiative neutrino decay) hum all type-II supemo_
since the onset of galaxies can be computed. The shape of the spectnan is depen-

dent on m_, and ru, as well as the estimated supernova rate per gala.x'y type, and

the density of galaxies in the Universe. By c_ spectral shapes limits can

be placed on rn_ and r_, while absolute normalization of the spectrtan will place
limits on the radiative decay branching ratio. The results of this investigation are

forthcoming.
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VIII. Summary

This search and analysis is extremely timely due to the recent developments in

particle and astrophysics. No systematic study of this type has been attempted
before; a non-observation of the gamma ray products from neutrino decay would

place significant limits on the mass and lifetime of neutrinos while observation of

this process would be a scientific triumph with profound implications for the Stan-
dard Model of particle physics, many astrophysical processes, and cc_nology.

The time difference between a supernova and the _ of its observation

by COMPTEL will determine the mass/lifetime parameter space sampled. In ad-
dition, the source exposure, energy spectra of detected gamma rays, and arrival

times will permit analysis of COMPTEL data to look for neutrino decay propet'tles

with a sensitivity unobtainable in terrestrial latxa-atories.
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